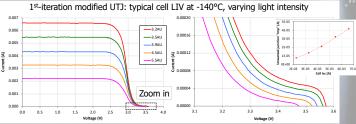
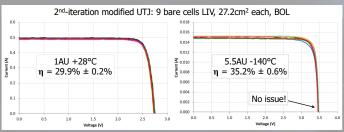


Development of High-Performance Solar Cells for the Jupiter and Saturn Environments

Andreea Boca¹ (andreea.boca@jpl.nasa.gov), Jonathan Grandidier¹, Paul Stella¹, Philip Chiu², Xing-Quan Liu², James Ermer², Claiborne McPheeters³, Christopher Kerestes³, and Paul Sharps³

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA 91109; ²Boeing Spectrolab Inc., Sylmar CA 91342; ³SolAero Technologies Corp., Albuquerque NM 87123


Motivation:


- The planetary science community is interested in targets far from the Sun
- Solar arrays are relatively low-cost, readily available, highly reliable
- However, high-AU environments are challenging for solar arrays e.g. Jupiter: high radiation and 3-4% of one sun Saturn: milder radiation but only 1% of one sun
- Currently, solar arrays for low irradiance low temperature (LILT) are typically large and massive, e.g. ~600kg for planned Europa Clipper
- There is a need for cells optimized for Jupiter and/or Saturn

LILT optimization example #1:

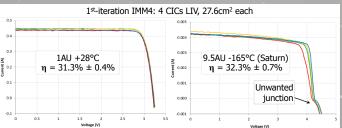
- Baseline design: Spectrolab UTJ, cell that is now powering Juno spacecraft $\eta=28\%$ at 1AU 28C (1X = 1367W/m²), ~30% at 5.5AU -140C (Jupiter);
- 1st design iteration: modified UTJ, changes to epi to increase cell voltage LILT only: unwanted reversed junction near Voc in 4th quadrant, limits FF
- Variable irradiance: unwanted junction is photoactive, like a low-Isc cell
- 2nd design iteration: further modified to eliminate problem interface This design provides ~17% more power than baseline at Jupiter BOL
- LILT-only performance issue has been successfully resolved

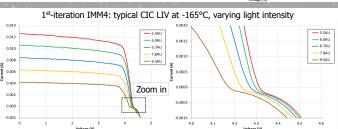
Acknowledgements:

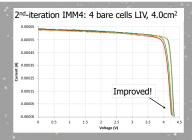
The authors thank Molly Shelton, Karen De Zetter, Bob Kowalczyk and Clara MacFarland of JPL for taking the LIV data shown throughout this poster; and Fred Elliott and Jeremiah McNatt of NASA GRC for management of the EESP project for the STMD/GCD program.

National Aeronautics and Space Administration

Jet Propulsion Laboratory

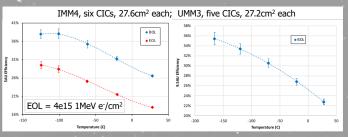

California Institute of Technology


Pasadena, California


www.nasa.gov

LILT optimization example #2:

- 1st design iteration: SolAero IMM4, advanced cell originally developed for 1AU LILT only: unwanted rectifying junction near Voc in 1st quadrant, limits FF
- Variable irradiance: unwanted junction is not photoactive in this case Majority-carrier barrier at passivation interface intended for minority carriers e.g. BSF, see Hoheisel et al., IEEE JPV 2, 2012; and 42nd IEEE PVSC, 2015
- Also used low-temp IV curve shapes of isotypes to identify unwanted junction
- 2nd design iteration: modifications intended to eliminate problem interface
 This design provides ~7% more power than 1st iteration at Saturn BOL, estimated CIC efficiency near-term ~35%, >36% with further modifications
- LILT-only performance issue has been significantly ameliorated



High-efficiency cells for Jupiter and Saturn:

- For Jupiter: need superior LILT radiation hardness 3-5e15 1MeV e-/cm²
 Promising architecture: IMM4 from SolAero
 Efficiency at 5AU -125°C = 37.9% ± 1.2% BOL, 29.5% ± 1% EOL
- For Saturn: immunity from LILT issues as presented in above examples Promising architecture: UMM3 from Spectrolab Efficiency at 9.5AU -165°C = 35.4% \pm 1.2% BOL

- Applying LILT optimization expected to yield further improvements

