NASA Jet Propulsion Laboratory California Institute of Technology Follow this link to skip to the main content

BEACON eSpace at Jet Propulsion Laboratory >
JPL Technical Report Server >
JPL TRS 1992+ >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2014/42285

Title: High speed, multi-channel, thermal instrument development in support of HyspIRI-TIR
Authors: Johnson, William R.
Hook, Simon J.
Foote, Marc
Eng, Bjorn T.
Jau, Bruno
Keywords: imaging
spectroscopy
Multi-spectral
thermal
mercury cadmium telluride (MCT)
long wave infrared (LWIR)
Issue Date: 24-Aug-2011
Publisher: Pasadena, CA : Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2011.
Citation: SPIE Optics and Photonics 2011, San Diego, California, August 23-25, 2011
Abstract: The Jet Propulsion Laboratory is currently developing an end-to-end instrument which will provide a proof of concept prototype vehicle for a high data rate, multi-channel, thermal instrument in support of the Hyperspectral Infrared Imager (HyspIRI)–Thermal Infrared (TIR) space mission. HyspIRI mission was recommended by the National Research Council Decadal Survey (DS). The HyspIRI mission includes a visible shortwave infrared (SWIR) pushboom spectrometer and a multispectral whiskbroom thermal infrared (TIR) imager. The prototype testbed instrument addressed in this effort will only support the TIR. Data from the HyspIRI mission will be used to address key science questions related to the Solid Earth and Carbon Cycle and Ecosystems focus areas of the NASA Science Mission Directorate. Current designs for the HyspIRI-TIR space borne imager utilize eight spectral bands delineated with filters. The system will have 60m ground resolution, 200mK NEDT, 0.5C absolute temperature resolution with a 5-day repeat from LEO orbit. The prototype instrument will use mercury cadmium telluride (MCT) technology at the focal plane array in time delay integration mode. A custom read out integrated circuit (ROIC) will provide the high speed readout hence high data rates needed for the 5 day repeat. The current HyspIRI requirements dictate a ground knowledge measurement of 30m, so the prototype instrument will tackle this problem with a newly developed interferometeric metrology system. This will provide an absolute measurement of the scanning mirror to an order of magnitude better than conventional optical encoders. This will minimize the reliance on ground control points hence minimizing postprocessing (e.g. geo-rectification computations).
URI: http://hdl.handle.net/2014/42285
Appears in Collections:JPL TRS 1992+

Files in This Item:

File Description SizeFormat
11-4135.pdf861.81 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, but are furnished with U.S. government purpose use rights.

 

Privacy/Copyright Image Policy Beacon Home Contact Us
NASA Home Page + Div 27
+ JPL Space
Site last updated on November 15, 2012.
If you have any comments or suggestions for this web site, please e-mail Alexander Smith or call 4-4202.