NASA Jet Propulsion Laboratory California Institute of Technology Follow this link to skip to the main content

BEACON eSpace at Jet Propulsion Laboratory >
JPL Technical Report Server >
JPL TRS 1992+ >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2014/42190

Title: Autonomous landing and ingress of micro-air-vehicles in urban environments based on monocular vision.
Authors: Brockers, Roland
Bouffard, Patrick
Ma, Jeremy
Matthies, Larry
Tomlin, Claire
Keywords: micro air vehicles (MAVs)
onboard,
ingress algorithms
vision-based autonomous landing
Issue Date: 25-Apr-2011
Publisher: Pasadena, CA : Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2011.
Citation: SPIE Defense, Security, and Sensing, Orlando, Florida, April 25, 2011.
Abstract: Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.
URI: http://hdl.handle.net/2014/42190
Appears in Collections:JPL TRS 1992+

Files in This Item:

File Description SizeFormat
11-1611.pdf1.32 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, but are furnished with U.S. government purpose use rights.

 

Privacy/Copyright Image Policy Beacon Home Contact Us
NASA Home Page + Div 27
+ JPL Space
Site last updated on December 5, 2014.
If you have any comments or suggestions for this web site, please e-mail Robert Powers.