NASA Jet Propulsion Laboratory California Institute of Technology Follow this link to skip to the main content

BEACON eSpace at Jet Propulsion Laboratory >
JPL Technical Report Server >
JPL TRS 1992+ >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2014/41996

Title: SWOT : the Surface Water and Ocean Topography Mission : wide- swath altimetric elevation on Earth
Authors: Fu, Lee-Lueng
Alsdorf, Douglas
Morrow, Rosemary
Rodriguez, Ernesto
Mognard, Nelly
Keywords: altimetry
hydrology
wide swath
ocean topography
Issue Date: Feb-2012
Publisher: Pasadena, CA : Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2012.
Series/Report no.: JPL Publication
12-5
Abstract: The elevation of the surface of the ocean and freshwater bodies on land holds key information on many important processes of the Earth System. The elevation of the ocean surface, called ocean surface topography, has been measured by conventional nadirlooking radar altimeter for the past two decades. The data collected have been used for the study of large-scale circulation and sea level change. However, the spatial resolution of the observations has limited the study to scales larger than about 200 km, leaving the smaller scales containing substantial kinetic energy of ocean circulation that is responsible for the flux of heat, dissolved gas and nutrients between the upper and the deep ocean. This flux is important to the understanding of the ocean’s role in regulating future climate change. The elevation of the water bodies on land is a key parameter required for the computation of storage and discharge of freshwater in rivers, lakes, and wetlands. Globally, the spatial and temporal variability of water storage and discharge is poorly known due to the lack of well-sampled observations. In situ networks measuring river flows are declining worldwide due to economic and political reasons. Conventional altimeter observations suffers from the complexity of multiple peaks caused by the reflections from water, vegetation canopy and rough topography, resulting in much less valid data over land than over the ocean. Another major limitation is the large inter track distance preventing good coverage of rivers and other water bodies. This document provides descriptions of a new measurement technique using radar interferometry to obtain wide-swath measurement of water elevation at high resolution over both the ocean and land. Making this type of measurement, which addresses the shortcomings of conventional altimetry in both oceanographic and hydrologic applications, is the objective of a mission concept called Surface Water and Ocean Topography (SWOT), which was recommended by the National Research Council’s first decadal survey of NASA’s Earth science program. This document provides wide-ranging examples of research opportunities in oceanography and land hydrology that would be enabled by the new type of measurement. Additional applications in many other branches of Earth System science ranging from ocean bathymetry to sea ice dynamics are also discussed. Many of the technical issues in making the measurement are discussed as well. Also presented is a preliminary design of the SWOT Mission concept, which is being jointly developed by NASA and CNES, with contributions from the Canadian Space Agency.
URI: http://hdl.handle.net/2014/41996
Appears in Collections:JPL TRS 1992+

Files in This Item:

File Description SizeFormat
JPL Pub 12-5.pdf26.11 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, but are furnished with U.S. government purpose use rights.

 

Privacy/Copyright Image Policy Beacon Home Contact Us
NASA Home Page + Div 27
+ JPL Space
Site last updated on December 5, 2014.
If you have any comments or suggestions for this web site, please e-mail Robert Powers.