NASA Jet Propulsion Laboratory California Institute of Technology Follow this link to skip to the main content

BEACON eSpace at Jet Propulsion Laboratory >
JPL Technical Report Server >
JPL TRS 1992+ >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2014/41855

Title: Space Technology 7 : micropropulsion and mass distribution
Authors: Carnaub, A.
Dunn, C.
Ziemer, J,
Hruby, V.
Spence, D.
Demmons, N.
Roy, T.
McCormick, R.
Gasaska, C.
Young, J.
Connolly, W.
O'Donnell, J.
Markley, F.
Maghami, P.
Hsu, O.
Keywords: ST-7
colliod thrusters
gravitational modeling
Issue Date: 3-Mar-2007
Publisher: IEEE
Citation: Aerospace Conference, 2007 IEEE , vol., no., pp.1-10, 3-10 March 2007
Abstract: The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The ST7 distrubance reduction system (DRS) will contain new micropulsion technology to be flown as part of the European Space Agency's LISA (laser interferometer space antenna) Pathfinder project. After launch into a low Earth orbit in early 2010, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun LI Lagrange point for operations. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro-Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control position reference will be provided by the European LISA Technology Package, which will include two nearly free-floating test masses. The test mass position and attitude will be sensed and adjusted using electrostatic capacitance bridges. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom, six for each of the test masses and six for the spacecraft. In the absence of other disturbances, the test masses will slowly gravitate toward local concentrations of spacecraft mass. The test mass acceleration must be minimized to maintain the acceleration of the enclosing drag-free spacecraft within the control authority of the micropropulsion system. Therefore, test mass acceleration must be predicted by accurate measurement of mass distribution, then offset by the placement of specially shaped balance masses near each test mass. The - acceleration is characterized by calculating the gravitational effect of over ten million modeled points of a nearly 500-kg spacecraft. This paper provides an overview of the mission technology and the process of precision mass modeling of the DRS equipment.
URI: http://hdl.handle.net/2014/41855
Appears in Collections:JPL TRS 1992+

Files in This Item:

File Description SizeFormat
06-3898.pdf2.02 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, but are furnished with U.S. government purpose use rights.

 

Privacy/Copyright Image Policy Beacon Home Contact Us
NASA Home Page + Div 27
+ JPL Space
Site last updated on November 15, 2012.
If you have any comments or suggestions for this web site, please e-mail Alexander Smith or call 4-4202.