NASA Jet Propulsion Laboratory California Institute of Technology Follow this link to skip to the main content

BEACON eSpace at Jet Propulsion Laboratory >
JPL Technical Report Server >
JPL TRS 1992+ >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2014/41796

Title: MOS 2.0 - modeling the next revolutionary mission operations system
Authors: Delp, Christopher L.
Bindschadler, Duane
Wollaeger, Ryan
Carrion, Carlos
McCullar, Michelle
Jackson, Maddalena
Sarrel, Marc
Anderson, Louise
Lam, Doris
Keywords: aerospace computing
ground support systems
software architecture
object-oriented methods
aerospace robotics
Issue Date: 5-Mar-2011
Publisher: Pasadena, CA : Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2011.
Citation: IEEE Aerospace Conference, Big Sky, Montana, March 5, 2011
Abstract: Designed and implemented in the 1980's, the Advanced Multi-Mission Operations System (AMMOS) was a breakthrough for deep-space NASA missions, enabling significant reductions in the cost and risk of implementing ground systems. By designing a framework for use across multiple missions and adaptability to specific mission needs, AMMOS developers created a set of applications that have operated dozens of deep-space robotic missions over the past 30 years. We seek to leverage advances in technology and practice of architecting and systems engineering, using model-based approaches to update the AMMOS. We therefore revisit fundamental aspects of the AMMOS, resulting in a major update to the Mission Operations System (MOS): MOS 2.0. This update will ensure that the MOS can support an increasing range of mission types, (such as orbiters, landers, rovers, penetrators and balloons), and that the operations systems for deep-space robotic missions can reap the benefits of an iterative multi-mission framework.12 This paper reports on the first phase of this major update. Here we describe the methods and formal semantics used to address MOS 2.0 architecture and some early results. Early benefits of this approach include improved stakeholder input and buy-in, the ability to articulate and focus effort on key, system-wide principles, and efficiency gains obtained by use of well-architected design patterns and the use of models to improve the quality of documentation and decrease the effort required to produce and maintain it. We find that such methods facilitate reasoning, simulation, analysis on the system design in terms of design impacts, generation of products (e.g., project-review and software-delivery products), and use of formal process descriptions to enable goal-based operations. This initial phase yields a forward-looking and principled MOS 2.0 architectural vision, which considers both the mission-specific context and long-term system sustainability.
URI: http://hdl.handle.net/2014/41796
Appears in Collections:JPL TRS 1992+

Files in This Item:

File Description SizeFormat
11-0121.pdf1.18 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, but are furnished with U.S. government purpose use rights.

 

Privacy/Copyright Image Policy Beacon Home Contact Us
NASA Home Page + Div 27
+ JPL Space
Site last updated on December 5, 2014.
If you have any comments or suggestions for this web site, please e-mail Robert Powers.