NASA Jet Propulsion Laboratory California Institute of Technology Follow this link to skip to the main content

BEACON eSpace at Jet Propulsion Laboratory >
JPL Technical Report Server >
JPL TRS 1992+ >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2014/35433

Title: Advances in Studies of Electrode Kinetics and Mass Transport in AMTEC Cells
Authors: Williams, R.M.
Jeffries-Nakamura, B.
Ryan, M.A.
Underwood, M.L.
Kisor, A.
O'Connor, D.
Kikkert, S.
Issue Date: Aug-1993
Citation: Atlanta, GA
Abstract: Previous work reported from JPL has included characterization of electrode kinetics and alkali atom transport from electrodes including Mo, W, WRh<SUB>x</SUB>(Mn), in sodium AMTEC cells and vapor exposure cells; and Mo in potassium vapor exposure cells. These studies were generally performed in cells with small area electrodes (about 1 to 5 cm<SUP>2</SUP>), and device geometry had little effect on transport. Alkali metal diffusion coefficients through these electrodes have been characterized, and approximate surface diffusion coefficients were derived in cases of activated transport. A basic model of electrode kinetics and transport at the alkali metal vapor/pourous metal electrode/alkali beta"-alumina solid electrolyte (BASE) three phase boundary has been proposed which accounts for electrochemical reaction rates with a collision frequency near the three phase boundary and tunneling from the porous electrode partially covered with adsorbed alkali metal atoms. The small electrode effect in AMTEC cells has been discussed in several papers, but quantitative investigations have described only the overall effect and the important contribution of electrolyte resistance. The quantitative characterization of transport losses in cells with large area electrodes has been limited to simulations of large area electrode effects, or characterization of transport losses from large area electrodes with significant longitudinal temperature gradients. This paper describes new investigations of electrochemical kinetics and transport, with four 14.4 cm<SUP>2</SUP> WPt<SUB>3.5</SUB> electrodes, including the influence of electrode size on the mass transport loss in the AMTEC cell. These electrodes exhibit very slow sintering, as well as excellent sodium transport properties, making them attractive candidates for AMTEC power conversion use. However, the facile sodium transport in WPt<SUB>3.5</SUB> electrodes makes characterization of the transport process difficult.
URI: http://hdl.handle.net/2014/35433
Appears in Collections:JPL TRS 1992+

Files in This Item:

File SizeFormat
93-1025.pdf117.52 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, but are furnished with U.S. government purpose use rights.

 

Privacy/Copyright Image Policy Beacon Home Contact Us
NASA Home Page + Div 27
+ JPL Space
Site last updated on December 5, 2014.
If you have any comments or suggestions for this web site, please e-mail Robert Powers.