NASA Jet Propulsion Laboratory California Institute of Technology Follow this link to skip to the main content

BEACON eSpace at Jet Propulsion Laboratory >
JPL Technical Report Server >
JPL TRS 1992+ >

Please use this identifier to cite or link to this item:

Title: Dynamic Simulation of a Periodic 10 K Sorption Cryocooler
Authors: Bhandari, P.
Rodriguez, J.
Bard, S.
Wade, L.
Issue Date: 28-Jun-1994
Citation: Vail, CO
Abstract: A transient thermal simulation model has been developed to simulate the dynamic performance of a multiple-stage 10 K sorption cryocooler for spacecraft sensor cooling applications that require periodic quick-cooldown (under 2 minutes) , negligible vibration, low power consumption, and long life (5 to 10 years). The model was specifically designed to represent the Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE), but it can be adapted to represent other sorption cryocooler systems as well. The model simulates the heat transfer, mass transfer, and thermodynamic processes in the cryostat and the sorbent beds for the entire refrigeration cycle, and includes the transient effects of variable hydrogen supply pressures due to expansion and overflow of hydrogen during the cooldown operation. The paper describes model limitations and simplifying assumptions, with estimates of errors induced by them, and presents comparisons of performance predictions with ground experiments. An important benefit of the model is its ability to predict performance sensitivities to variations of key design and operational parameters. The insights thus obtained are expected to lead to higher efficiencies and lower weights for future designs.
Appears in Collections:JPL TRS 1992+

Files in This Item:

File SizeFormat
94-0965.pdf610.59 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, but are furnished with U.S. government purpose use rights.


Privacy/Copyright Image Policy Beacon Home Contact Us
NASA Home Page + Div 27
+ JPL Space
Site last updated on December 5, 2014.
If you have any comments or suggestions for this web site, please e-mail Robert Powers.