NASA Jet Propulsion Laboratory California Institute of Technology Follow this link to skip to the main content

BEACON eSpace at Jet Propulsion Laboratory >
JPL Technical Report Server >
JPL TRS 1992+ >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2014/13281

Title: Optical metrology for testing an all-composite 2-meter diameter mirror
Authors: Catanzaro, B.






Issue Date: 22-Aug-2001
Citation: Optomechanical Design and Engineering 2001
Pasadena, CA, USA
Abstract: The Herschel Space Observatory (formerly known as FIRST) consists of a 3.5 m space telescope designed for use in the long IR and sub-milimeter wavebands. To demonstrate the viability of a carbon fiber composite telescope for this application, Composite Optics Incorporated (COI) manufactured a fast (f/1), large (2 m), lightweight (10.1 kg/m squared) demonstration mirror. A key challenge in demonstrating the performance of this novel mirror was to characterize the surface accuracy at cryogenic (70 K) temperatures. A wide variety of optical metrology techniques were investigated and a brief survey of empirical test results and limitations of the various techniques will be presented in this paper. Two complementary infrared (IR)techniques operating at a wavelength of 10.6 microns were chosen for further development: (1) IR Twyman-Green Phase Shifting Interferometry (IR PSI) and (2) IR Shack-Hartmann (IR SH) Wavefront Sensing. Innovative design modifications made to an existing IR PSI to achieve high-resolution, scannable, infrared measurements of the composite mirror are described. The modified interferometer was capable of measuring surface gradients larger than 350 microradians. The design and results of measurements made with a custom-built IR SH Wavefrong Sensor operating at 10.6 microns are also presented. A compact experimental setup permitting simultaneous operation of both the IR PSI and IR SH tools is shown. The advantages and the limitations of the two key IR metrology tools are discussed.
URI: http://hdl.handle.net/2014/13281
Appears in Collections:JPL TRS 1992+

Files in This Item:

File SizeFormat
01-2025.pdf2.53 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, but are furnished with U.S. government purpose use rights.

 

Privacy/Copyright Image Policy Beacon Home Contact Us
NASA Home Page + Div 27
+ JPL Space
Site last updated on November 15, 2012.
If you have any comments or suggestions for this web site, please e-mail Alexander Smith or call 4-4202.