
National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California,

Managing Complexity in Next Generation
Robotic SpacecraftRobotic Spacecraft
From a software perspective..

Kirk Reinholtz
Jet Propulsion Laboratory
C lif i I tit t f T h lCalifornia Institute of Technology

Our Future Undertakingsg

Hydrobot in Europa OceanTitan Explorer Hydrobot in Europa OceanTitan Explorer

2

BIG Challengesg

• Much higher degree of autonomy required
– Engineering - Execute mission without a lot of hand-holding

• Hand holding is expensive
• Hand holding slows the pace of the mission (more $$ per unit science)
• Dynamic environment -> Reaction time faster than light time allowsy g

– Science - Find interesting targets, point, acquire data, condense, downlink
• Highly dynamic - Can’t just stop when something goes wrong

– Fail-safe (the good old days) -> Fail-operational (future necessity)
• More capability, mostly in the software, with same or higher reliability
• … and tight on the usual technical and programmatic constraints

– Limited power
– Limited mass
– Limited money

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

GDP Inflated FY2000$ Average 1959-2008

3

Fundamental Limits

• The fundamental limit to what we can accomplish is how much
thi ki i i d it f li h tthinking is required per unit of accomplishment

• WE build our systems to do OUR bidding. We need to understand
what we want to accomplish, and how to accomplish it, and know
that it’ll really work when we field the systemthat it ll really work when we field the system

• This is usually called “complexity” - The amount of wetware effort
required to understand, control, and predict the behavior of a
system (be it hardware, software, the spacecraft, or the project as syste (be t a d a e, so t a e, t e spacec a t, o t e p oject as
a whole). The parts we don’t understand become residual risk.

• Complexity is difficult to manage because it does not modularize
well - Over-simplification of one subsystem (say the command
structure) over-complicates another system (say the operations
of the system) It’s all about the complexity of the elements and
their interactions…and understanding “simple with respect to ?”

The Apollo I hatch is an example of the difficulty of applying the notion of simplicity. The hatch was very simple in one sense, as it consisted of a
fairly simple structure that was simply bolted in place to seal the capsule. This is a classic example of design simplicity, as defined in the Constellation
Architecture Requirements Document (“CARD”): “Design Simplicity: Minimize the number of moving parts and the amount of interdependence on
other systems, ease of operations and maintenance by the crew and ground personnel. Simple systems require less operations attention, necessitate
less training, impose fewer operator constraints, enhance reliability for long duration missions, and streamline ground turnaround activities for

bl fl h l ” f l hi l f d b h f i li i l i hi h h h diffi l

4

reusable flight elements”. Unfortunately this was later found to be the wrong type of simplicity to apply in this case. The hatch was difficult to open
quickly, and so astronauts were killed when they could not get out of the capsule when it caught fire during a test. The lesson was learned, and a new
hatch was designed and used for the remainder of the Apollo program. The new hatch had over 400 parts and was certainly a complex (in the sense of
“lots of parts”) design, but it could be opened, simply and reliably and under stressful conditions, in about ten seconds. What was viewed as complex
was suddenly viewed as simple.

Bigger Systemsgg y

5

Same Moneyy

GDP Inflated FY2000$ Average 1959-2008

6

Complexity Wallp y

Bad

Bad

Bad

7

Fundamental Limits

• … We will always push limits of performance per dollar
• That’s our business!

H d
Obstacles

Variability
Uncertainty

Constraints

8

Hazards

Managing Complexityg g p y

• Separate concerns - modularize
Software Cost Driven by Hardware Complexity

3000

• Hide concerns - Abstraction, Layering
• Re-baseline the measure of complexity -

Personal and institutional education, 1500

2000

2500

,
experience, commonality, standards,
engineering handbooks.

0

500

1000

400 600 800 1000 1200 1400 1600 1800 2000

Software size (KSLOC)

High H/W Complexity Nominal H/W Complexity

hashas
11

0..10..1

Goal NetworkGoal Network

sharesshares
22

1..*1..*

1..*1..*0..10..1

ltlt
determinesdetermines

0..10..11..*1..*
controlscontrols

ltlt
0..*0..*

constrainsconstrains1..*1..*
11

executesexecutesexecutesexecutes
0..10..1 0..10..1

1..*1..* 1..*1..*

0..*0..*
delegatesdelegates

221..*1..*

createscreates
11
0..*0..*

0..*0..*

0..10..1
modifiesmodifies

11 Elaborator

ControllerEstimator

Time PointTemporal
Constraint

State Variable

Goal

Control System

Elaboration, projection, & scheduling

State variables

OK?
Intent

0..*0..*0..*0..*
consultsconsults

0..*0..* 0..*0..*suppliessupplies

1..*1..*

issuesissues

producesproduces
0..*0..*
1..*1..*

0..*0..*

consultsconsults
110..*0..* 11

producesproduces

11

0..*0..*

0..10..1 0..*0..*

gg

reads as
evidence
reads as
evidence

distillsdistills
State Value

State Function

Value History

Control

commands
measurements

Estimation

OK?
Knowledge

9

producesproduces
11

0..*0..*

0..*0..* 0..*0..*
acceptsaccepts
11

0..*0..*

0..*0..*

1..*1..*
0..*0..*0..*0..*

0..10..1{xor}{xor}
0..10..1

Measurement CommandHardware Adapter

Value History

System
Under Control

commands

Managing Hardware Complexityg g p y

• Hardware complexity is EXPENSIVE to deal with
– Would rather spend this on capability

Software Cost Driven by Hardware Complexity

3000

2000

2500

1000

1500

0

500

400 600 800 1000 1200 1400 1600 1800 2000

10

400 600 800 1000 1200 1400 1600 1800 2000

Software size (KSLOC)

High H/W Complexity Nominal H/W Complexity

Managing Hardware Complexityg g p y
• Multi-threaded/Multi-processor programming model

A li ti i l k f t BAD BAD BAD– Application programmer using locks of any type BAD BAD BAD
– Transactional memory, wait-free shared structures GOOD
– MP/MT libraries (e.g. math) GOOD (as long as I can manage resources)

• High interrupt rates, lots of kinds of interrupts BADg p , p
• Corner cases BAD

– Long errata sheet very expensive
• Imbalanced system BAD

– Not enough cache
– Highly NUMA
– Insufficient RAM
– Slow interconnect fabric

• Same data at same time to all strings GOOD
• Binary output compare GOOD. MVS etc BAD
• Can’t virtualize the CPU BAD
• Inappropriate fault containment regions BAD
• Can set initial hardware state GOOD
• Repeatable execution state trajectory GOOD

f (C S /SC)

11

• No mechanisms for atomic operations (CAS, LL/SC) BAD
– BONUS POINTS: LL/SC atomic on two separate addresses VERY GOOD

Managing Hardware Complexityg g p y

Diffi lt I/O d l BAD S ifi ll• Difficult I/O model BAD. Specifically…
• Double buffering GOOD
• Buffers that require very fast handling to avoid under/overrun BAD
• Inability to detect under/overrun BAD• Inability to detect under/overrun BAD
• Registers that read back what was last written GOOD
• Atomic operations GOOD
• Atomic value split across registers with race condition BADAtomic value split across registers with race condition BAD
• Any undetected race condition BAD

12

What could we do with all that
hardware???hardware???

• OK, so we avoid the needless complexity of the previous slides
• What can we do with all those gates to make a leap in control

capability and science return?
• Some speculations follow…p

13

Putting it together - Conservativeg g

• Extreme control reliability and extreme science compute capability

14

Putting it together - A bit radicalg g

• Extreme control reliability AND control compute capability
– (Science as on previous page)

15

Wrap upp p

• Our job, basically, is to
• … Deliver ever more capability
• … At very high reliability
• … Without more time
• … And Without more money
• Complexity is the fundamental limit
• We must spend our complexity wiselyp p y y

– … High capability (as viewed by customer) per unit complexity GOOD
– … complexity that bogs us down BAD

• Ever more gates is the basis of more capability
• … BUT only if we can use them effectively and reliably
• Examples given show this is a reasonable objective

Software Cost Driven by Hardware Complexity

1500

2000

2500

3000
GDP Inflated FY2000$ Average 1959-2008

16
0

500

1000

1500

400 600 800 1000 1200 1400 1600 1800 2000

Software size (KSLOC)

High H/W Complexity Nominal H/W Complexity

Future Work

• Develop programming models for the new hardware
• Integrate software architecture for safety critical uses with TTA
• Provide read reserved/store conditional or CAS that operates on

two separate addresses simultaniouslyp y

17

